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SYMBOLS
Janimer radius (in.) M,
Cross-sectional area of cord (in.?)
Density of cord (Ibg/in.?) p
Maximum teunsile force on cord R
(Ibf)
Tensile force on cord while cord t
is tangential to jammer (lbg)
Tensile force on cord while cord
is changing position from tangen- T
tial to perpendicular to jammer
(1bg) W
Acceleration of gravity (32.2
2

ft/s*) Wo
Jammer moment of inertia (slug-
5 w,
ft%)

X
Instantaneous length of partially
unwound cord (in.)
Length of fully unwound cord
() y
Effective total weight of cords
and attached masses (1bg) :

Weight of each cord (lbg)

Total weight of masses attached
to cords (lbg)

Breaking strength of cord (psi)
Ratio of initial to final spin
velocities

Time required for fully unwound
cord to change position from
tangential to perpendicular to
jammer (s)

Time required to despin from in-
itial to final spin velocity (s)
Time rate of change of jammer
spin velocity (s™%)

Jammer initial spin velocity (rps)
Jammer final spin velocity (rps)
Function of time required for ful-
Iy unwound cord to change posi-
tion from tangential to perpen-
dicular to jammer (= Wot)

Time variation of angle y (s™")
(fig. 3)

Time variation of angle 8 (s™')
(fig. 3)

ENGLISH TO METRIC CONVERSION

_English unit

——
=2

1 in.
1 ft

11
1 psi
1 slug

Metric unit

2.54 cm
0.365 m
0.454 kg (force)
6.90 kP..
0.454 kg (mass)
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1. INTRODUCTION

Six unattended expendable jammers
(UEJ's) are placed within the interior of a
155-mm shell. The shell is fired as ordinary ord-
nance over a wide range of trajectories, and
each UEJ is ejected from the rear of the air-
borne shell at a minimum altitude of 3300 ft
with a forward speed of up to 2500 ft/s and a
spin rotation of up to 260 rps. A controlled
spacing of 1600 + 300 ft between landed units is
desired, and each UE] is required to land on a
specified side with its spin axis to within 20 deg
of the ground vertical. The angle between the
plane of rotation of a highly spinning UE] and
the ground vertical remains essentially un-
changed during descent. Consequently, proper
landing orientation requires despinning the
UE]J to nearly zero spin.

The UE] can be despun to zero spin by
using an angular momentum transfer device,
such as a vo-yo. In this procedure, the rota-
tional energy and the angular momentum are
conservatively transferred from the UE]J to two
small masses ejected from the outer casing of
the UE]. For some trajectories, the allowable
time for despin is less than 10 s. The UE] can be
completely despun from any initial spin in less
than 1 s with the same ejected masses.

The conservation equations for rotational
energy and angular momentum for the system
consisting of a UE] and a yo-yo provide exact
solutions for the ratio of final to initial angular
velocities and the time to despin in terms of the
yo-yo mass ejection system and physical char-
acteristics of the UE]. Test data of despin of a
model of the UE]J are in excellent agreement
with predicted data for a known moment of in-
ertia of the UE].

2. THEORETICAL CONCEPTS

The yo-yo consists of two identical yos each
having a mass, M;/2, attached to one end of a
cord of uniformly distributed mass and weight,
M;. The other end of each cord is attached to
the UEJ. The cords are initially wrapped

around the mass center of the UE] and spin
axis, as shown in figure 1. The two cords are at-
tached to the UE] at diametrically opposed
positions to avoid unbalanced forces. When the
two masses are simultaneously allowed to un-
wind about the spinning body, centrifugal
force pulls each mass away from the body.

CORD

RELEASE

MASS

Figure 1.  Yo-yo despin device and unattended
expendable jammer before despinning.

The cords unwind to their full length, and
when each cord attains the position normal to
the tangent drawn to the surface of the UE] as
shown in figure 2, each cord is simultaneously
released and allowed to escape. Rotational
energy and angular momentum are conserved.
Hence, the reduction of rotational energy and
angular momentum of the spinning UE]J equals
the rotational energy and angular momentum
imparted to the two cords and masses. The two
equations for rotational energy and angular
momentum are solved simultaneously to obtain
explicit solutions for despin, maximum cord
tension, and time for despin as functions of the
length and the mass of the yos and the radius
and the moment of inertia of the UE].

Figure 2. Yo-yo despin device and unattended
expendable jammer at time of release
of vos.
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Following the procedure described by
Fedor' and referring to figure 3, when8 -y =0
(which is the position at which the yo is
released), conservation of rotational energy is
given by

2
!!21 + %(aWﬁ- Li)2 = constant

- %(1 + Ma?)Wg

and conservation of angular momentum is
given by

IW+ M(L + a)(aW; + Lj) = constant
(2)

= (1+ Ma?)W, ,
where
a = jammer radius (in.),
I = jammer moment of inertia

(slug-ft?),
L = length of fully unwound cord (in.),

M = effective total weight of cords and
attached masses (lby),

Wy = jammer initial spin velocity (rps),

W; = jammer final spin velocity (rps),

¥ time variation of angle y (s™).

For G = 144g(l — R)I/Ma? >> 1, the
simultaneous solution of the two equations
yields the ratio of final to initial spin velocities,

2
|+M3‘I_B}>

p=— e k)
I+ Ma'lg
144g
where

Lo = [(L/e) + 1] .

‘l‘ V. Fedor. Tueory and Design Curves for a Yo-Yo De-Spin

Mechanism for Satellites, National Aeronautics and Space Ad-
ministration Technical Note D-708 (August 1961).
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Figure 3.  Notation for energy and momentum
conservation equations.

According to equation (3), by vary-
ingM and L, R may range between — I< R<
1. R < 0 corresponds to a reversal of the direc-
tion of spin. Spin reversal occurs when the yos’
mass or length or both are sufficiently large to
cause complete despin of the UE] before the yos
are released from the UE]. Thereafter, the ten-
sion on the cords caused by the centrifugal
force exerted by the yos produces the reversal of
the direction of spin of the UE].

The tension on a cord during the un-
winding of the cord and during which time the
cord remains tangential to the UE] is the
product of the mass of the weight and the ac-
celeration:

Fi = - -‘21 (aW +16%) ,

where

F, = tensile force on cord while cord is
tangential to jammer (lbg),

! = instantaneous length of partially:
unwound cord (in.),

W = change of jammer spin velocity
with respect to time (s %),

8 = time variation of angle 6(s™).
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The maximum tension occurs when the cord
has unwound by the amount £ = A/V'3, and

Fimax = 0.65MWE A(1 - a2/2%) | (4

where

= (/M) +

The tension on a cord while the cord is
changing position from tangential to perpen-
dicular to the jammer is

F2 = % (aw? + Ly%) .

The maximum tension occurs at the point of at-
tachment to the jammer, when @ — y = 0. and

F MWAL aR G+1-R a +1
2max = 24g L+l

When R = 0, the time required to despin
from initial to final spin velocity is

T= < + = (6)

In equation (6), the first term is independent of
R and is the time required for the cord to com-
pletely unwind to length L. The second term,
X/Wy, is the additional time required for the
fully unwound cord to change position from
tangential to perpendicular to jammer, or the
additional time required for the cord to release
from the jammer. The term X/W, is the time, t,
required for

fo‘(y‘—é) dt = n/2.
where t = 0 denotes the time at which the cord

is initially fully unwound.

For large spin reductions and cords with a
uniformly distributed mass, as shown by
Fedor,! the effective mass is

=eM/3 +Mz. 7

'} V' Fedor. Theory and Design Curces for a Yo-Yo De-Spin
Mechanism for Satellites, National Aerongutics and Space Ad-
ministration Technical Note D-T08 (August 1961).

High strength-to-weight cords, such as
Kevlar, are essential because of the large tensile
forces. Cords made of Kevlar may be assumed
to have a breaking strength of P = 3(10°) psi
and a density in the range of 0.06 € D < 0.12
Ibs/in.>. Allowing for a 20-percent safety
margin, the minimum cross-sectional area is

A = Foa/2.5010%, (8)
and the maximum length of each cord is

L = M;/AD. 9

The above equations have been solved on a
computer. Figure 4 summarizes the predicted
relations for R as functions of My, L, A, Fjpax.
and Fima,/ Famax in the range —0.2 < R < 0.4
for several values of My, with Wy = 300 rps,

= 0.0108 slug-ft*, P = 2.5(10°) psi, and
D = 0.06 1bs/in.?. Thus, various combinations
of values of L,M;, and M, can be used to obtain
a given value of R, including spin reversal for
which R < 0. For example, from figure 4(a,b),
we see that the UE] can be completely despun
from any initial spin with L = 15 in.,
M; = 0.062 lbg, and M; = 0.12 lbg. The max-
imum tensile force on the cord is Fim. and
amounts to about 17,000 1b (fig. 4d, e). By
equation (6), the time required for the cord to
unwind is 3.2 ms and X/Wg = 1 ms. For a
given R, the effect of increasing M; is to shorten
L and increase Fynma,. For given R and M,, the
ratio of changes between M, and I is

<

dM;

and between Finqx and 1 is

dFmgx

Flmax
0< ——— &£ 1.
dl
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Figure 4. Predicted variation of (a) weight of

Kevlar cord, (b) length of Kevlar cord. (¢} cross-
sectional area of Kevlar cord. (d) maximum ten-
sile force on Kevlar cord while cord is tangential
to jammer, and (e) ratio of tensile forces on Kevlar
cord, with ratio of initial to final spin velocities
for various attached masses: D = 0.06 lbs/in.*,
I = 0.0108 slug-ft*, P = 2.5(10%) psi. and
Wo = 300 rps.




The dependency for all relations on
P and D enters only in the ratio P/D.
The above relationships are repeated in
figure 5 for a change in cord density to
D = 0.12 Ibs/in.*. The dependency of
the various functions on D is shown in
figure 6 for R = 0 and P = 2.5(10%)
psi. From the latter, we see that a
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Figure 5. Predicted variation of (a) weight of
Kevlar cord. (b) length of Kevlar cord, (¢} cross-
sectional area of Keviar cord, (d) maximum ten-
sile force on Kevlar cord while cord is tangential
to jammer, and (e) ratio of tensile forces on Kevlar
cord, with ratio of initial to final spin velocities
for various attached masses: D = 0.12 |bg/in.?,
I = 0.0108 slug-ft’. P = 2.5(10%) psi, and
Wo = 300 rps.
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primary effect of increasing the
strength-to-weight ratio of the cord
material is to permit a lengthening of
the cords, which in turn permits a
reduction of M and a reduction of the
maximum force on the cord. Similar
results pertain for other R in the range
-0.2 € R < 04.
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Figure 6. Predicted variation of (a) weight of
Keviar cord, (b} length of Kevlar cord, (¢) cross-
sectional area of Kevlar cord, (d) maximum ten-
sile force on Kevlar cord while cord is tangential
to jammer, and (e) ratio of tensile forces on Kevlar
cord, with density of Kevlar for various attached
masses: 1 = 0.0108 slug-ft?, P = 2.5(10% psi,
R = 0 and W, = 300 rps.
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The following example is given to indicate
the required values and tolerances of L. and M
to despin a typical UE]. For a single vo-vo (a
single pair of vos) and Wy = 300 rps, successful
despin of the UE] to within a final spin of 15
rps requires a value of R in the range
-0.05 £ R £ 0.05. For D = 0.06 and
M; = (. the associated ranges of 1. and M, are
32.0 < L € 303 in. and 0.070 € M,
< 0.063 Ibg (fig. 4b.a). These tolerances are
easily met in mass-produced items. Assuming
good repeatability, a single yo-vo will ac-
complish the required despin.

3. EXPERIMENTAL APPARATUS

The experimental apparatus used to
demonstrate the feasibility of a single vo-vo
system for despinning the UE] consisted of a
single pair of yos attached to a test model UE],
a detonator and a detonating cord to initiate
unwinding of the vos. an electric motor to spin
the UE] to about 60 rps. and a mechanism for
disengaging the motor from the UE] so as to
allow the UE] to rotate freely on a shaft follow-
inz disengagement (fig. 7, 8).

A framing camera with speeds ranging
between 2300 and 2900 frames/s was used to
measure the times required to sever the Kevlar
cords, despin the UE]. and release the cords
from the UE]J. The above times were deter-
mined with a precision of one frame, or +0.4
ms. The camera speed is known to an accuracy
of within 10 frames/s. A tachometer was used
to obtain spin records of the UEJ. The
tachometer measured spin to a precision of
within 1 percent of the instantaneous spin.

The vos used in the tests consisted of Kevlar
cords attached at one end to either a brass
weight or an aluminum weight and the other
end to a steel link (fig. 9). For each test, the link
end of each of the two vos was joined to the
UE]J at the release hook: the two release hooks
were located at diametrical ends of the UE]J.
Each of the cords was wrapped about the cir-
cumference of the UEJ in a plane approx-
imating that of its center of mass. The weights
were fitted into wells of the UE] and held
securely in place by a restraining screw at the

13

end of each cord. The cross section of the cords
was 0.10 x 0.25 in.2. The total length of cach
cord was 17.5 in. To an accuracy of within +2
percent, the cord lengths between the point of
applied force to the UE] and the midpoint of
the weights was 14.1 and 13.8 in. for each of
the brass- and aluminum-weighted vos. The
weights of the link and of the collar with pin
were 0.021 and 0.017 1b. The weights of the
Kevlar cords for the brass- and aluminum-
weighted vos were 0.013 and 0.014 lb. The
brass and aluminum weights were each
0.077 = 0.001 and 0.029 + 0.001 1b. Thus,
each brass vo consisting of link. collar with pin.
cord, and weight weighed 0.128 + 0.001 Ib.
Each aluminum yo, similarly constructed but
without collar and pin, weighed 0.064 + 0.001
1b.

|KEVLAR CORDS

Figure 7. Model unattended expendable jammer (UE])
and test apparatus.




KEVLAR CORDS

Figure 8.

RESTRAINING SCREW|

Model unattended expendable jammer:

14

(a) top and (b) front and top.
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Twelve tests were performed, eight with a
pair of brass vos and four with a pair of
aluminum yos. Except for the above noted
slight variations in the lengths and the weights
of the vos, the tests of each of the brass- and
each of the aluminum-weighted yos were iden-
tical.

The test model UE] weighed 7.6 1b. The
rotating shaft to which it was fixed in addition
to other attachments free to rotate following
disengagement from the motor weighed 1.3 1b.
Hence. the total weight of the rotating ensem-
ble following disengagement was 8.9 Ib. The
radius of gyration of this ensemble was
estimated at 2.0 in. The radius of gyration was
calculated from equation (3) for both the brass-
and aluminum-weighted yos following comple-
tion of the tests, by using the test values found
for the despin. The radius of gyration was
found to average 1.94 and 1.91 in. for the
brass- and aluminum-weighted yos. In the lat-
ter two calculations, the values used for M, and
M; were the cords and the metal weights; the
weights of the link and of the collar with pin
were not included.

15

(d) —— . PO o] 1 ”T |
H Figure 9. Test vos: (a. b) complete brass weighted and (c. d) aluminum weighted (links not shown).

The despin time of the UE] for a yo-yo
system consisting of a single pair of yos for most
practical applications will amount to between 3
and 30 ms. The difference in time between the
release of the two yos must be much smaller
than the time for despin in order to avoid
lateral displacement and random dispersion of
the UE] in a direction normal to the UE] spin
axis. This required difference in release time
decreases with increasing W, because of the
larger forces encountered by the cords with
larger W,. To attain the required “simul-
taneity” in the time of release of between 0.3
and 3 ms, a single detonator was placed at the
midpoint of a semicircle of diameter 3.5 in. of
mild detonating cord* (fig. 8). Each end of the
detonating cord was placed in physical contact
with a section of the Kevlar cord between the
restraining screw and the weight. Ignition of
the detonating cord caused the severance of the
ends of the Kevlar cords tl.at restrained the
weights. The speed of detonation of the
detonator cord was 25,000 ft/s, and the conse-
quent severance of the Kevlar cords was

*The Navy BBU-T detonator and HMX F1.8C detonating cords

(9 grains ft) were used in the reported tests.

S 2 -



calculated to begin about 10 us following
initiation of detonation. The difference
between travel times for the detonation to
reach the two ends of the Kevlar cords was
measured as 1 us.

4. THEORETICAL AND EXPERIMENTAL
RESULTS

Equation (3} was used to obtain the design
requirements (lengths and weights) for the
brass- and aluminum-weighted yos so as to ob-
tain specified values of R, by uzing an estimated
radius of gyration of 2.0 in. for the disengaged
freely rotating ensemble of 8.9-1b weight
(which includes the model UE], the shaft, the
tachometer, etc.). By equation (3), R is in-
dependent of W,. Equations (5) to (7) were
used to obtain predicted values of Fymax, Famax.
and T for an assumed initial spin of 60 rps. The
values for Fimex and Fim.. were used to deter-
mine the required strength of the Kevlar cords.
The time required to despin (starting from
severance of the cords to their release from the
UE]) was calculated to be 22 ms for L = 14.0
in, and W, = 55 rps. Here, L/aW, = 16 ms and
X/Wy = 6 ms. The value of X is dependent on
R, but is independent of Wy. The value of X
was calculated from the momentum and energy
equations by successive integrations for y from
8 —y=n2t0=y.

The results of the 12 tests are summarized
in table 1. These results were anticipated from
the calculations by using an approximate value
for 1. It is important to observe that, had the
precise value for [ been known, the agreement
between the calculated and test data for W,
would have been the same as the test
repeatability cited below.

In the tests of the eight brass-weighted yos,
the average measured W, was 52.1 rps. Here,
the average measured R was —0.125 with the
maximum deviation in R of 0.013. With this
precision, the corresponding maximum devia-
tion in W, is 0.67 rps.
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In the tests of the four aluminum-weighted
yos, the average measured Wy was 54.5 rps. In
tests 2, 3, and 5, the average measured R was
0.296, with the maximum deviation in R of
only 0.006. With this precision, the corre-
sponding maximum deviation in W, is 0.33 rps.
One of the recovered links was separated from a
vo in test 1. R measured 00.360 in this test, and
separation of the link during despin would
cause the observed larger value of R.

Assuming the above repeatability in R of
within 0.013 for spins up to the required max-
imum of 260 rps, a single pair of yos could com-
pletely despin the UE]J to within £3 rps.

Clear camera data were recorded in 10 of
the 12 tests. As shown in table 1, the test values
of T (measured from the instant of detonation
to the release of the two vos) for the brass- and
aluminum-weighted vos were 18 + 1 and
20 + 2 ms. The Kevlar cords were observed to
completely sever in 1.0 to 1.5 ms following
detonation. The observed difference between
the release times of the two vos from the model
UE] was usually less than 1.0 ms and ranged
between 0 and 1.4 ms.

The forces occurring during despin vary as
W, The forces Fimax and Famas exerted on the
UE] also depend on the vo-yo design itself and
are about 11,000 Ib at R= 0 and We= 260 rps.
A structurally sound vo-yo may be constructed
solely of Kevlar cords of sufficient mass and
length. The single pair of vos can apply for all
W, since R is independent of Wo. The design
parameters M, and L for such a pair of vos are
indicated in figure 6(a. b) for R = 0 by the
curves with M, = 0.

5. SUMMARY AND CONCLUSIONS

Twelve tests performed in a laboratory
demonstrated that a single pair of vos will com-
pletely despin a model of the UE] of 8.9-1b
weight and 1.9-in. radius of gyration with an
initial spin of 57 rps in a time period of 20 ms.
To completely despin, each yo weighed 0.13 Ib
and was 14 in. long. The time required for
despin varies inversely with the initial spin.




Jammer spin

TABLE 1. TEST RESULTS OF DESPIN OF MODEL UNATTENDED EXPENDABLE JAMMER
FOR BRASS-WEIGHTED AND ALUMINUM-WEIGHTED YOS

The observed difference between the
release times of the two yos from the model UE]
was usually less than 1 ms. Translation of the
UE] caused by this difference in release times is
well within the allowable 300-ft ground disper-
sioq.

The experimental repeatability of the ratio
of the final spin to the initial spin was found to
carrespond to a repeatability of the final spin to
within 0.67 rps for initial spins ranging

17

Weight | Tew el L wowy Y Kemarks
(ms)
Aluminum 1 54.6 19.7 0.360 Link is believed to have separated
from one vo during despin.
2 54.3 16.4 0.302 23
3 54.2 15.9 0.294 24
5 54.8 16.0 0.292 20
& Brass 4 54.9 -6.49 -0.118 19
6 55.4 -6.27 -(L113 18
7 55.6 -6.91 -0.124 17
8 — -- — — No test was done.
9 56.3 -7.78 -0.138 18
10 57.0 -6.83 -0.120 19
11 56.5 -7.35 ~0.130 17
12 55.5 -6.92 -0.125 17
13 - — - - No test was done.
14 — - - No test was done.
15 50.5 —6.56 -0.130

between 50 and 57 rps. By scaling the above
repeatability, a single pair of vos could despin
the UE] to within 23 rps of zero spin at any
initial spin up to 260 rps.

Calculations show that a single pair of vos
can be used to completely despin the UE] with
each yo consisting solely of a Kevlar cord
(without weight attached thereto) for initial
spins up to 260 rps.
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